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Abstract
The one-particle Schrödinger and Dirac equations are derived, without making
any quantization hypothesis, from the postulate that an elementary particle is
a physical wave packet of dynamically varying form and size, rather than a
pointlike object located somewhere within the support of a wavefunction that
serves only as a mathematical probability amplitude. An isolated multiparticle
system can, similarly, be described in principle as a set of interacting wave
packets governed by coupled one-particle equations, a picture from which, in
the nonrelativistic limit, the multiparticle Schrödinger equation can be obtained
as a sufficiency condition for the system to have a conserved total energy equal
to a particular value E.

PACS numbers: 03.65.Bz, 03.65.Pm, 03.75.−b, 31.10.+z

It has previously been shown [1] that, if the masses of free particles are defined absolutely
as their rest-frame de Broglie frequencies, rather than in terms of the standard kilogram, then
Planck’s constant h̄, which specifies the scale of the quantization rules and hence, supposedly,
of ‘quantum effects’, in fact disappears from all quantum equations and their quantitative
predictions. This suggests that it should be possible to develop a theory of quantum phenomena
that does not make use of a quantization postulate to connect the two ‘worlds’ of classical
and quantum physics but, instead, treats the two domains in a seamlessly unified manner.
The present paper offers a quantization-free derivation of the key equations of the quantum
mechanics of systems with a fixed number of particles from a handful of fundamental and
empirically established principles: de Broglie’s postulate of matter waves, Lorentz covariance,
the existence of ‘intrinsic spin’, and the requirement of appropriate symmetry or antisymmetry
under the exchange of indistinguishable particles.

1. The dispersion relation for matter waves

In 1923 de Broglie [2] postulated the existence of matter waves associated with material
particles, using special relativity to develop an analogy with the photon/light wave duality
and to show that such waves would have the unusual property that their wavelength would
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be approximately inversely proportional to particle speed, becoming infinitely large in the
particle’s rest frame. A wave packet formed from these waves would then travel with a group
velocity equal to the particle velocity, and so would always follow the motion of its point
particle. Empirical evidence for matter waves and for this inverse dependence of wavelength
on particle speed was soon obtained by Davisson and Germer [3] and Thomson [4] from
electron diffraction by crystals, and subsequently by many other experiments.

We will take as our starting point de Broglie’s picture of a packet of matter waves which,
in a frame of reference in which the particle is at rest, is an oscillation synchronous over the
finite volume of the packet, so that the mean wavelength becomes infinite; but we will drop
the idea of a pointlike particle accompanying these waves and assume that the wave packet is,
physically, the particle. Such an assumption requires, of course, the additional postulate (here
treated as a working hypothesis, to be considered further in subsequent papers) that if and
when the particle is detected the packet undergoes a physical collapse to one which is of much
smaller size, and which is thus capable of producing well-defined tracks in such detectors as
nuclear emulsions or bubble chambers.

Denoting the rest-frame de Broglie angular frequency by ωR , we can use Lorentz
transformation to find the 4-wavevector in any other frame, where the particle has velocity v;
kα
R = (ωR/c, 0, 0, 0) transforms to kα = (ω/c, k) with

ω = ωRγ, k = ωRγ v/c2, (1)

with γ = [1 − v2/c2]−
1
2 , giving the wavelength as λ = 2π/|k| = 2πc2/(ωRγ |v|) and

displaying its inverse dependence on speed. The dispersion relation linking ω and k for free
matter waves is therefore

ω =
√

ω2
R + c2k2 (2)

and, as de Broglie found, the group velocity vg = ∇kω = v.
We will define the free-particle rest-frame angular frequency ωR , which is characteristic

of the type of particle, as the ‘absolute mass’ [5] of the particle, and denote it by m:

m ≡ 2πc2

λγ |v| . (3)

It is reasonable to refer to this quantity as a ‘mass’ because, comparing equation (3) with the
usual expression λ = 2πh̄/(m̄γ |v|) for de Broglie wavelength in terms of the conventional
particle mass m̄ relative to the kilogram, we find

m = m̄c2

h̄
, (4)

so that m is exactly proportional to m̄, and in classical mechanics inertial masses are defined
by the theory only up to a common scale factor. The angular frequency m is too high to be
determined directly by frequency measurement, but can be obtained very accurately (to within
an uncertainty, at present, of less than 70 parts per billion) for any microscopic particle by
measuring λ for the particles via crystal diffraction when they have a precisely known speed
[6] or by other means, such as measurement of atomic recoil velocities in the emission and
absorption of photons [7]. From now on, we specify all masses by their absolute values and
also, for convenience, choose units of length and time such that c = 1.

It can be shown [1, 8] that the absolute mass m, as a frequency, has the physical property of
inertia. Consider the behaviour of a wave packet bearing charge q accelerated by an external
electromagnetic field, and so executing a curved path in spacetime, in the ‘classical limit’
where the packet size is small compared with the distance of the packet from the source of
the field. The occurrence of such a curved path requires a distortion of the wave pattern
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which corresponds to local shifts of the mean 4-wavevector kα off the mass shell, that is,
to values such that kαkα ≡ ω2 − k2 is not equal to m2. The distortion can be covariantly
quantified by specifying that the local kα has to be replaced by (kα − qAα), thus defining a
spacetime-dependent 4-vector Aα(x) = Aα(x, t) = (φ(x, t), A(x, t)), which we refer to as
the ‘4-potential’; in other words, we can generalize equation (1) to

kα = mUα + qAα (5)

where Uα is the velocity 4-vector (γ, γ v). Consideration of the spacetime geometry of the
distorted wave pattern then implies that the packet’s 4-velocity changes with its proper time τ

according to dUα/dτ = (q/m)(∂αAβ − ∂βAα)Uβ , demonstrating the inertial property of m
and, in fact, deriving Newton’s second law with a force of Lorentz form.

We can, finally, derive the dispersion relation for matter waves subject to an arbitrary
prescribed electromagnetic potential Aα; using equations (2) and (5) we can write m2 =
m2γ 2(1 − v2) = (ω − qφ)2 − (k − qA)2, or

ω =
√

m2 + (k − qA)2 + qφ, (6)

reducing for a low-speed particle to

ω ≈ m +
1

2m
(k − qA)2 + qφ. (7)

2. The one-particle Schrödinger equation

The dispersion relation for any kind of wave is of limited applicability because it refers
only to the relationship between ω and k for the idealized case of a single monochromatic
plane wave; a wave equation describing the detailed point-to-point spacetime behaviour of the
wave’s ‘displacement’ F(x, t) is required to treat wave packet evolution and to solve boundary
value problems involving the waves. Such a wave equation can be obtained by considering
a typical plane wave with displacement F = F0 cos(k · x − ωt) and replacing the ω and k
in the dispersion relation by appropriate time and space derivatives. This is very simple for
classical nondispersive waves, such as sound, seismic waves, light in vacuo or shallow water
waves [9], where the phase speed vp is independent of frequency and the dispersion relation
is ω = vp|k|, with vp a constant; we can write

∂2F

∂t2
= −ω2F = −v2

pk2F = v2
p∇2F, (8)

which, being a linear wave equation, also applies to the superpositions of plane waves in
a wave packet or of special functions with symmetries appropriate to a particular boundary
geometry.

Matter waves are, however, dispersive, and so this procedure requires modification. Let
us consider the case of a slow charged particle subject to an electrostatic potential φ, with
dispersion relation ω ≈ m + (1/2m)k2 + qφ. If we multiply both sides of this by the
‘displacement’ associated with matter waves, denoted by 
, and let 
 be a typical plane wave

0 cos(k · x − ωt), which we will call 
(1), there is the problem that, while the k2
(1) on
the right-hand side becomes −∇2
(1), ω
(1) is minus the first time derivative of a different
function 
(2) = 
0 sin(k · x −ωt). It appears that in order to represent matter waves we must
use two wavefunctions, 
(1) and 
(2), coupled together according to

−∂
(2)

∂t
= − 1

2m
∇2
(1) + (m + qφ)
(1) (9)
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and, similarly,

∂
(1)

∂t
= − 1

2m
∇2
(2) + (m + qφ)
(2). (10)

We can, however, try a representation in terms of a single function which is a linear
combination of these two functions, 
 = 
(1) + C
(2), where C is a constant. If we
add equation (9) to C times equation (10), the right-hand side of the resulting equation
will just be [−(1/2m)∇2
 + (m + qφ)
] whereas the left-hand side can be written as
C[∂
(1)/∂t − (1/C)∂
(2)/∂t], and can be made proportional to ∂
/∂t if we choose C such
that −1/C = C, or C2 = −1; so we need to make C equal to i, and our linear combination is
the complex function


 = 
(1) + i
(2). (11)

The pair of coupled equations can then be written as the single equation

i
∂


∂t
= − 1

2m
∇2
 + (m + qφ)
. (12)

The occurrence in the dispersion relation of an odd power (1) of ω but even powers (0, 2)
of k thus forces us to use a complex wavefunction if matter waves are to be represented by a
single symbol, and the form of the dispersion relation leads to the one-particle Schrödinger
equation [10]. Equation (12) differs from its usually quoted form in two ways. It does not
contain Planck’s constant, not because h̄ has been set to 1 (h̄ still has its usual SI value) but
because h̄ is irrelevant here since we are not assuming any quantization rules; and there is an
extra term m
, which could easily be removed by using the new wavefunction 
 ′ = eimt
, but
is retained to emphasize the fact that the Schrödinger equation describes quite small departures
of the angular frequency from the dominant free rest-frame value m, changes which arise from
particle motion and the effect of external potentials.

The real quantity |
|2 was originally interpreted by Schrödinger as proportional to charge
density, but this was soon replaced by Born’s postulate [11] that |
|2 gives the probability of
finding the supposedly pointlike particle at a given location at a given time, so its integral over
all space must be unity at all times. Here we can continue to think of it provisionally in terms
of a charge density, with ‘charge’ extended to include all the additive entities (electric charge,
baryon number, hypercharge, etc) that can be carried by a particle, but operationally we treat
it as a probability density, although expressed somewhat differently from Born’s statement.
We extend our working hypothesis by postulating that, if the particle is detected at time t, the
probability of its packet collapsing to a smaller one contained within a small (finite) volume
�V centred on the point x is |
(x, t)|2�V .

For a particle trapped in some fixed external potential φ(x) and so forming a standing
wave with, say, a frequency E, the time dependence can be factored out by writing

(x, t) = ψ(x) e−iEt , where ψ(x) is a real spatial function; 
 then satisfies the time-
independent Schrödinger equation[

m − 1

2m
∇2 + V (x) − E

]

 = 0 (13)

where V (x) ≡ qφ(x).
The case of a particle subject to both electric and magnetic potentials can be treated by a

similar procedure applied to the dispersion relation in equation (7) and leads to the modified
Schrödinger equation

i
∂


∂t
= m
 +

1

2m
(i∇ + qA)2
 + qφ
. (14)
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For a steady, spatially uniform magnetic field B one can rewrite this equation, as shown in
many quantum textbooks, in the form

i
∂


∂t
= m
 − 1

2m
∇2
 − q

2m
B · L
 + qφ
, (15)

where L is the orbital angular momentum operator r × (−i∇)]. The new B-dependent term in
this equation can be thought of as due to the interaction with the external magnetic field of a
magnetic moment (q/2m)L associated with the orbital motion.

A further correction is, however, required in the dispersion relation for an electron
or other material particle in a magnetic field: a double-valuedness in the particle energy
which is conventionally described as ‘intrinsic spin’ [12], although it differs fundamentally
from orbital angular momentum in that the ‘spin’ has a single magnitude and generates
twice the magnetic moment per unit of angular momentum. Here we do not try to picture
a spinning wave packet, but merely formalize the double-valuedness by allowing for the
particle to exist in one of, or a superposition of, two states 
1 and 
2, with frequencies
ω1,2 = m + (1/2m)(k −qA)2 + qφ ∓ (q/2m)B3 in a magnetic field oriented along the x3 axis.
Writing the two states as components of a column vector denoted by 
, this can be written as(

ω1 0
0 ω2

) (

1


2

)
=

[(
m +

1

2m
(k − qA)2 + qφ

) (
1 0
0 1

)
− q

2m
B3

(
1 0
0 −1

)] (

1


2

)
.

(16)

The last term can be written formally in rotation-covariant form as [−(q/2m)�σ · B
], where
we introduce a set of three frame-invariant matrices σ 1, σ 2 and σ 3, with σ 3 equal to the last
matrix in equation (16); covariance under rotation can be ensured if we choose σ 1 and σ 2 and
the rule for transformation of 
 such that [−(q/2m)�σ · B
] transforms in the same way as 


itself. It can be shown [13] that this can be achieved if 
 transforms as a ‘Pauli spinor’


 → 
 ′ = exp

(
i
θ

2
n · �σ

)

, (17)

under rotation by angle θ about direction n, and

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, (18)

so that the σ i satisfy the commutation and anticommutation relations

[σ i, σ j ] = 2iεijkσ
k, {σ i, σ j } = 2δij I, (19)

with I denoting the (2 × 2) unit matrix. These equations have been derived, not from the
application of postulated quantization rules, similar to those for orbital angular momentum, to
some imagined spinning motion of the particle, but merely from the double-valuedness of the
energy in a magnetic field plus rotational covariance.

Finally, writing the time dependence of 
1 and 
2 as e−iω1t and e−iω2t and using the
previous method to eliminate ω1, ω2 and k in the dispersion relations, we obtain Pauli’s
generalization [14] of the Schrödinger equation,

i
∂


∂t
=

[
m +

1

2m
(i∇ + qA)2 + qφ − q

2m
�σ · B

]

. (20)



5320 J W G Wignall

3. The Dirac equation

If we try to extend this approach to finding a Lorentz covariant wave equation, we run into the
problem that, even for a free particle, we have to deal with a term

√
m2 + k2 in the dispersion

relation (6) and hence with a difficult operator
√

m2 − ∇2. But Dirac realized that if one
regards the wavefunction as a multicomponent object represented by a column vector, as in
Pauli’s treatment of spin, the dispersion relation can be taken as a matrix equation which, on
squaring, gives the correct relation ω2 = m2 + k2 [15].

Let us take 
 as an n-component object and write the free-particle dispersion relation in
the form

ω = αiki + βm = �α · k + βm, (21)

where ω is an (n × n) diagonal matrix with elements (ω1, ω2, . . . , ωn), and α1, α2, α3 and β

are Hermitian (n×n) matrices chosen so that the square of the right-hand side of equation (21)
is (m2 + k2) times the n-dimensional unit matrix (not shown explicitly in the matrix equations
that follow). One can then easily show that Dirac’s matrices must satisfy the relations

{αi, αj } = 2δij , {αi, β} = 0, β2 = 1. (22)

The Pauli matrices {σ i} satisfy the first set of anticommutation relations but there is no
nonzero (2 × 2) Hermitian matrix β satisfying the second set since, as is well known, any
Hermitian (2 × 2) matrix can be expressed as a linear superposition of the Pauli matrices and
the (2 × 2) unit matrix I. So we increase n from 2 to 4, choose β as the simplest nontrivial
matrix satisfying β2 = 1 and construct the Hermitian (4 × 4){αi} from the {σ i}

αi =
(

aσ i bσ i

b∗σ i dσ i

)
, β =

(
I 0
0 −I

)
(23)

where a, b and d are complex constants to be determined. It is then readily shown from the
anticommutation relations in equation (19) that equations (22) are satisfied if a and d vanish
and |b| = 1, so a possible choice of Dirac matrices is

αi =
(

0 σ i

σ i 0

)
, β =

(
I 0
0 −I

)
, (24)

the so-called ‘standard’ representation; we could, of course, use any other set
(UαiU−1, UβU−1), with U a unitary (4 × 4) matrix, which would also satisfy equation (22),
without altering the physics.

Following the path of what was done in the previous section in deriving the Pauli equation,
we consider a plane wave in which the four components (
1, 
2, 
3, 
4) of the Dirac spinor

 are given the time dependences (e−iω1t , . . . , e−iω4t ) and multiply 
 on the left by both sides
of the matrix dispersion relation equation (21). The introduction of time and space derivatives
of 
 then leads to the free-particle Dirac equation

i
∂


∂t
= −i�α · ∇
 + βm
 (25)

which, being linear and independent of frequency and wave vector, applies also to a relativistic
wave packet. The Dirac equation can be written in manifestly Lorentz covariant form: if we
define γ 0 ≡ β and γ i ≡ βαi , equation (25) becomes

(iγ α∂α − m)
 = 0. (26)

For a charged particle in an external electromagnetic field we make the same replacements
(ω → ω − qφ, k → k − qA) as in the previous section, obtaining a dispersion relation

ω = �α · (k − qA) + βm + qφ (27)
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and the generalized Dirac equation

i
∂


∂t
= [−�α · (i∇ + qA) + βm + qφ]
, (28)

or, in manifestly Lorentz covariant form,

[γ α(i∂α − qAα) − m]
 = 0. (29)

The Dirac equation is the simplest Lorentz covariant evolution equation for a
multicomponent 
 function capable of taking into account the phenomenon of ‘intrinsic
spin’. The detailed interpretation of the equation is given in many textbooks [16, 17], and
need not be repeated here, except for a few general comments. First, it turns out that only
two of the four complex components of a Dirac spinor are independent, corresponding to the
existence of a two-valued energy in an external magnetic field. In the nonrelativistic limit
and the standard representation, the components 
1 and 
2 become much larger than 
3 and

4 and it can be shown that they form a 2-spinor satisfying the Pauli equation (20), with the
factor multiplying the (�σ · B
) term now not needing to be put in by hand but automatically
having the correct value (apart from small QED corrections). The next order of approximation
leads to an ‘improved Pauli equation’ incorporating a spin–orbit coupling term proportional
to (�σ · L
), as observed experimentally in atomic states.

The other outcome of the Dirac equation is that it has solutions with negative frequencies,
as is clear from the dispersion relation (27) using the standard representation, because the
(−I ) in the β matrix multiplying the mass m gives rise to negative values of ω3 and ω4. In the
nonrelativistic limit these solutions have values of 
3 and 
4 much larger than those of 
1 and

2, and it is easily shown that in an external electric field they represent waves accelerated in a
direction opposite to that of positive frequency waves and are thus interpreted as antiparticles
bearing an opposite value of electric charge.

The requirement that matter waves have a Lorentz covariant dispersion relation which is
of first order in both angular frequency and 3-wavevector thus forces the wavefunction 
 to
have a surprisingly complicated mathematical nature; it has four complex components which
not only embody the property of intrinsic spin but also imply the existence of an antiparticle
corresponding to each type of ‘charge’-bearing particle.

4. Multiparticle quantum mechanics

In the previous sections of this paper we have derived the one-particle equations of quantum
mechanics from various forms of the dispersion relation for matter waves, which in turn
follow from de Broglie’s picture of synchronous oscillation in the rest frame plus Lorentz
transformation and the introduction of potentials as measures of off-mass-shell shifts. There
are a number of other ways of deriving the one-particle equations: for example, the Schrödinger
equation from the algebra of the generators of Galilean transformations [18] and the Dirac
equation from the simplest nontrivial multicomponent representation of the Lorentz group
[19–21]. But there does not appear to be any such simple derivation from first principles of
the quantum evolution equation for a system of two or more interacting particles.

The conventional approach to such a system is centred on the multiparticle Schrödinger
equation, whose origins lie more in the matrix mechanics of Born, Heisenberg and Jordan
[22] than in Schrödinger wave mechanics. It retains some of the formalism of classical point-
particle mechanics [23], making use of the Hamiltonian function H(q1, . . . , qN ;p1, . . . , pN)

from which the Newtonian equations of motion can be obtained via Hamilton’s equations, but
regarding the {qn} and {pn} as operators satisfying the quantization rules [qn, pm] = ih̄δnm;
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it is then postulated that the state vector 
 of the system evolves in time according to
ih̄∂
/∂t = H
.

If we express this formalism in the position representation, 
 becomes a function
in configuration space (q1, . . . , qN) and time, a nonseparable, entangled function which,
according to the orthodox view, cannot be regarded as the product of N separate wave packet
functions evolving in ordinary spacetime. This entanglement is a property of great importance
in treating not only the dynamical interparticle correlations in bound systems, but also, more
recently, the observed nonlocal correlations between particles formerly in interaction which
have subsequently become separated by large distances.

For the case of one particle in an external prescribed potential, this formalism leads
to the one-particle Schrödinger equation derived in section 2, and it is thus a reasonable
generalization of that equation to multiparticle systems—one which leads to comprehensive
and accurate predictions in thousands of different physical systems. But it is still just a
postulate. And there is still the problem, as in the one-particle case, that if the absolute
masses of particles are used then h̄, the characteristic scale factor of the quantization rules that
make quantum-mechanical quantities different from classical quantities, vanishes from all the
quantitative predictions of the multiparticle Schrödinger equation [1].

Moreover, it is not possible to formulate a Lorentz covariant extension of the equation;
there is a ‘no-interaction theorem’ [24], according to which the only classical multiparticle
system for which one can give a fully covariant Hamiltonian formulation is one in which the
particles do not interact with each other. It is possible to make low-order relativistic corrections
to the Schrödinger equation [25], but the fundamental problem of combining special relativity
with multiparticle quantum mechanics still eludes us; most of present-day quantum mechanics
is covariant only under Galilean transformations, in which the speed of light is taken to
be infinite—an assumption that is particularly worrisome if one tries to ‘explain’ quantum
nonlocal correlations merely by appeal to the entanglement of the multiparticle wavefunction
in configuration space.

Can the multiparticle Schrödinger equation be in some sense derived from the one-particle
equations? Let us try to formulate the N-particle problem as a set of coupled one-particle
equations describing N interacting wave packets, with each particle evolving in a way governed
by the rapidly changing potential due to all its similarly evolving neighbours.

Most of what we will do in this section is restricted to the nonrelativistic case of low particle
speeds, but we can at least start with Lorentz covariant equations. Consider a set of N spin- 1

2
particles with masses mr and charges qr(r = 1, 2, . . . , N) interacting electromagnetically
with each other and forming a closed system isolated from external fields. The spacetime
evolution of the rth wave packet 
r(x) = 
r(x, t) (supposed normalized to unity) should be
given by the Dirac equation[

iγ α ∂

∂xα
− mr − qrγαAα

r (x)

]

r(x) = 0, (30)

but with Aα
r (x) the rapidly varying retarded potential due to the other (N − 1) particles:

Aα
r (x) =

N∑
s=1(s 
=r)

∫
d4xsD

αβ

R (x − xs)qs

†
s (xs)γ0γβ
s(xs) (31)

where D
αβ

R (x) = ηαβθ(x0)δ(x2)/2π = ηαβδ(x0−|x|)/(4π |x|) is the standard electromagnetic
retarded Green function [26] and 


†
s (x)γ 0γ α
s(x) is the 4-current density of the sth particle.

Substitution of equation (31) into equation (30) then gives a set of N coupled nonlinear
integrodifferential equations for the 
r(x) in ordinary spacetime. These equations are Lorentz
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covariant and ought to be valid up to the level where higher QED effects such as pair creation,
self-interaction or vacuum polarization need to be taken into account.

One can imagine trying to solve these equations by a quest for ‘self-consistency’ in which
one starts with a plausible set of 
r ’s and iterates between successive approximations to the
Aα

r ’s and 
r ’s using equations (30) and (31)—something like the Hartree method [27], but
much more difficult because the Aα

r ’s are dynamically varying with time rather than being
mere time averages. This would, of course, be an extremely complicated mathematical task;
can we say something about the N-particle system, given our picture of it as a set of interacting
wave packets, but avoiding the almost impossible labour of actually calculating the individual

r ’s?

Let us simplify things by assuming that the wave packets are moving at such low
speeds that we can use nonrelativistic kinematics and ignore retardation and magnetic effects,
including dynamical effects due to spin; that is, we take the wavefunction for the rth particle
as a single normalized complex function 
r(x, t) of position and time multiplied by a constant
Pauli spinor, and assume only electrostatic interactions. Our system of particles is then
governed by the simpler, but still formidable, set of N coupled equations for the 
r in ordinary
spacetime

i
∂

∂t

r(x, t) =


mr − 1

2mr

∇2 + qr

N∑
s=1(s 
=r)

∫
d3xs

qs |
s(xs , t)|2
4π |x − xs |



r(x, t), (32)

with r = 1, 2, . . . , N .
The main difficulty in the solution of problems in multiparticle mechanics—classical or

quantum—comes from the fact that the potential energy of a system is inseparably shared
by all its particles. In the classical case we can, however, write an expression for the total
energy E of the system and know that, in the kind of isolated system we are concerned with
here, E is conserved in time—even if the system displays deterministic chaos [28]. For an
isolated classical system of pointlike particles governed by electrostatic interparticle forces,
the momentum pr = mrvr = mr dxr/dt of the rth particle satisfies the Newtonian equation of
motion dpr/dt = −∇r

∑
s 
=r Vrs , where Vrs = QrQse

2/(4π |xr − xs |) and, as is well known,
it can be shown [23] from these equations that the total energy

E ≡
∑

r

(
mr + p2

r

/
2mr

)
+

∑
r,s;r<s

Vrs (33)

is constant in time; the restriction r < s in the double summation of Vrs comes from the
successive buildup of the potential energy as particles are imagined to be added one at a time,
avoiding self-interaction and double counting.

We can readily write a similar equation for the quantum case, guided by the simple
expression for the conserved energy E of a single particle in a prescribed external potential,
obtained from the time-independent Schrödinger equation (13) and the normalization of 
 to
unity,

E =
∫

d3x
∗(x, t)

[
m − 1

2m
∇2 + V (x)

]

(x, t), (34)

which expresses the kinetic energy as the |
|2-weighted average of (−1/(2m
)∇2
) over
the wave packet and the potential energy as the |
|2-weighted average of V . For N mutually
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interacting wave packets we may thus write the conserved total energy as

E =
N∑

r=1

∫
d3xr 
∗

r (xr , t)

(
mr − 1

2mr

∇2
r

)

r(xr , t)

+
∑
r<s

∫
d3xr d3xs 
∗

r (xr , t)

∗
s (xs , t)Vrs(|xr − xs |)
r(xr , t)
s(xs , t). (35)

The final term is the sum of the pairwise mutual electrostatic potential energies of charge
distributions (possibly overlapping each other) having charge densities proportional to
|
r |2, |
s |2. (The xr and xs are just dummy variables ranging over the supports of the
rth and sth wave packets, and have nothing to do with the positions of imagined pointlike
particles.)

This energy equation is not in itself of much use to us for calculating possible values of
E because of course we do not know the rapidly varying 
r(x, t) functions corresponding to
each of the N wave packets. Suppose, however, that we invent the product function

�(x1, x2, . . . , xN ; t) ≡ 
1(x1, t), 
2(x2, t), . . . , 
N(xN, t)χ(1, 2, . . . , N), (36)

where χ is a direct product of the constant Pauli spinors for the N particles, and rewrite
equation (35) in terms of � by inserting the normalization condition [1 = ∫

d3x 
∗
q (x, t)


q(x, t) for the qth wave packet] (N −1) times in each of the rest plus kinetic energy integrals
and (N − 2) times in each of the potential energy integrals. The energy equation then takes
the more compact form∫

d3x1 d3x2 · · · d3xN �∗(x1, x2, . . . , xN ; t)

[∑
r

(
mr − 1

2mr

∇2
r

)
+

∑
r<s

Vrs − E

]

×�(x1, x2, . . . , xN ; t) = 0. (37)

This equation will hold if the invented function � and the energy E together satisfy the
equation [∑

r

(
mr − 1

2mr

∇2
r

)
+

∑
r<s

Vrs − E

]
�(x1, x2, . . . , xN ; t) = 0, (38)

that is, the time-independent form of the multiparticle Schrödinger equation, arising here as
a sufficiency condition for the total energy of the system to be conserved and equal to the
constant E.

We have not yet taken into account another important ingredient of quantum theory arising
in the treatment of multiparticle systems: the need to symmetrize or antisymmetrize � for
any set or sets of particles in the system which are indistinguishable. Suppose for simplicity
that there is just one set of indistinguishable particles in the system, represented by the first
N ′ factors in equation (36) (for example, the electrons in an atom). Clearly, because of the
symmetry of the operator in square brackets in equation (38) under interchange of particle
labels 1 and 2, it will still hold if we replace � by

�′(x1, x2, . . . , xN ; t) ≡ ±
1(x2, t), 
2(x1, t), . . . , 
N(xN, t)χ(2, 1, . . . , N) (39)

or by any function resulting from the permutation of position variables and spin labels
of one or more pairs among the N ′ particles; or, since equation (38) is linear in �, by
any linear combination of such permuted �’s. We postulate the additional condition,
required by experiment, that the � in equation (38) must possess the correct symmetrization
or antisymmetrization property—for example, in the case of electrons in an atom, the
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antisymmetrization required for the spin- 1
2 electrons, obtainable by expressing � not by a

simple product as in equation (36) but by a Slater determinant [29].
The approach in this section is somewhat limited in that, strictly speaking, the multiparticle

Schrödinger equation has not been derived, since equation (38) has not been rigorously shown
to be a necessary condition for equation (35) to hold, and the method applies only to an
isolated system of particles. However, it suggests that there is a significant difference in
status between the one-particle and multiparticle Schrödinger equations: whereas the former
provides a complete account of the dynamical evolution of the particle wave packet, the latter
seems to be more a statement about the energy E of the multiparticle system, and provides
a way of calculating the allowed eigenvalues of E without trying to follow in detail the very
complicated evolution of N mutually interacting wave packets.

One further simplification comes from separating out the global centre-of-mass evolution
of the isolated system [30]. If we re-express the � for a bound system as a function of relative
coordinates xRr and c.m. coordinates xCr by the sequences

xRr ≡ xr − xC,r−1, xCr ≡ mrxr + (m1 + m2 + · · · + mr−1)xC,r−1

m1 + m2 + · · · + mr

(40)

and define reduced masses by

1

µr

≡ 1

mr

+
1

m1 + m2 + · · · + mr−1
(41)

the multiparticle Schrödinger equation becomes[
m′ − 1

2m′ ∇2
CN −

N∑
r=2

(
1

2µr

∇2
Rr

)
+

∑
r<s

Vrs(xR2, . . . , xRN) − E

]

×�(xCN, xR2, . . . , xRN ; t) = 0, (42)

where m′ ≡ ∑N
r=1 mr . This can be satisfied by a product of the form � = �C(xCN, t)

�R(xR2, . . . , xRN). If we can find functions �R and corresponding constants E such that[
−

N∑
r=2

(
1

2µr

∇2
Rr

)
+

∑
r<s

Vrs(xR2, . . . , xRN) − E
]

�R(xR2, . . . , xRN) = 0, (43)

which is the Schrödinger equation for (N − 1) particles of masses (µ2, . . . , µN), with a
discrete set of negative eigenvalues E , the other factor must satisfy[

m′ + E − 1

2m′ ∇2
CN − E

]
�C(xCN, t) = 0, (44)

which has simple solutions of the form �C(xCN, t) = AK eiK·xCN f (t) (where the function
f (t) remains to be determined), provided that the energy of the system has the value

E = m′ + E +
K2

2m′ � m′ + E +
K2

2(m′ + E)
(45)

(since E � m′).
This is the energy, or frequency, of a free particle with mass (m′ + E) moving with

3-wavevector, or 3-momentum, K. In particular, the rest-frame frequency, or absolute mass,
of a bound state with binding energy B = −E > 0 is

m =
N∑

r=1

mr − B. (46)
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This demonstrates the additivity of what we have called absolute mass: a composite system
such as an atom or molecule possesses an overall de Broglie frequency corresponding to its
total mass (minus B) and a corresponding de Broglie wavelength which can be measured in
interference or diffraction experiments.

The N-particle Schrödinger equation, equation (38), can be generalized by noting that
the factor f (t), being the time dependence of a free wave �C with 3-wavenumber K
and rest-frame frequency m, must according to the Lorentz transformation have the form
e−iωt , with ω = mγ =

√
m2 + K2 � m + (1/2m)K2; this is equal to the E appearing in

equation (45), so that E�(t) = E�C(t)�R can be replaced by i∂�(t)/∂t to give the time-
dependent multiparticle Schrödinger equation for an isolated system

i
∂�

∂t
=

[∑
r

(
mr − 1

2mr

∇2
r

)
+

∑
r<s

Vrs

]
�. (47)

This form can be used, for example, in the more general situation where �C takes the form of
a wave packet, a superposition of plane waves with different K’s and E’s.

5. Discussion

In the earlier part of this paper we have derived the one-particle equations of quantum
mechanics, the Schrödinger and Dirac equations, without any use of h̄-dependent quantization
rules applied to the behaviour of a supposedly pointlike object—using instead the picture of an
elementary particle as a wave packet of dynamically varying form and size, with the frequency
of the de Broglie oscillation in the rest frame defined absolutely as the particle’s inertial mass.
We have then seen that the N-particle Schrödinger equation can be arrived at as a sufficiency
condition for an isolated system, viewed as a complicated assemblage of N interacting wave
packets, to have a conserved total energy equal to a particular value E. Furthermore, the defined
function � satisfying this equation can be expressed as the product of a free centre-of-mass
wavefunction �C , with a rest-frame de Broglie frequency equal to the sum of the absolute
masses of the constituents (minus a binding correction), and a time-independent function �R ,
expressing the internal evolution of the system, which satisfies an (N −1)-particle Schrödinger
equation. The reduced problem is still, except for the N = 2 case, quite formidable, but it can
be tackled by various approximation methods such as perturbation theory or, if that fails, the
variational method.

This talk of an N-particle system consisting of N separate wave packets evolving in
ordinary spacetime runs against the current orthodoxy, which dates from the downfall of
Schrödinger’s early interpretation of his wave equation in the mid-1920s. But it is difficult
to find arguments against it. Why should we expect the Dirac (or one-particle Schrödinger)
equation to break down just because the source of the potential acting on the rth particle
is itself changing due to the dynamically correlated evolution of neighbour wave packets?
It is true that the multi-packet picture as it stands is not useful for calculation because
of its mathematical complexity; but by the procedure outlined in the previous section one
obtains for the nonrelativistic case an eigenvalue equation for the total energy which can be
solved—exactly for N = 2 and by approximate means for higher N. The nonseparability,
or entanglement, of the defined � function satisfying the multiparticle Schrödinger equation
arises as a mathematical consequence of the ‘burying’ of the very complicated individual time
dependences in the overall e−iEt factor appearing in �; the effect of interparticle correlations
is retained in the form of the complicated standing wave described by the reduced (N − 1)-
particle equation. (The nonlocal kind of entanglement displayed in the detection of pairs
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of spacelike-separated particles formerly in interaction is quite another question, and will be
discussed in a future paper.)

This picture throws light on a number of other awkward questions. One is to understand
what happens when a free composite system undergoes dispersive spreading; for example, how
is it that the electron and proton wave packets in a spreading hydrogen atom can evolve in such
a way as to ensure that the composite packet still has the properties of being hydrogen—for
example in its electromagnetic emission and absorption spectra? The answer here would be
that the individual behaviour of the constituents is too complicated to be pictured; it is the
overall �C packet that spreads, carrying with it a complex of interacting packets characterized
by the �R equation, maintaining the energy E of whatever internal state that complex happens
to have, and therefore displaying the right spectral properties.

A more widely discussed question is the apparent difference between the unpredictable
behaviour of an isolated nonlinear system which, treated by classical mechanics, would display
chaos [28], and the smooth and systematic behaviour governed by the linear Schrödinger
equation obtained when such a system is ‘quantized’. This seeming contradiction can be
resolved if one regards the multiparticle Schrödinger equation, in contrast to the one-particle
equation, not as a complete dynamical description of a system but, rather, an energy equation;
the time dependence is the quite predictable e−iEt contributed by the �C factor, while the �R

factor for the case N � 3, where deterministic chaos can classically occur, already involves
very complicated behaviour even in the reduced system—reflecting, perhaps, the behaviour
one would expect if the system were to be treated by the quantum Heisenberg picture.

Further work is needed to extend this approach to a broader domain—for example, to
the effects of dynamical spin dependence or of external forces acting on the system. A
much bigger challenge is to apply the energy equation method to relativistic particle systems,
starting from N coupled Dirac equations and somehow tackling the problem of the retardation
of the potentials. Even so, this would not be the last word on the quantum treatment of
multiparticle systems, because it would not yet be taking into account QED effects which
cannot be adequately treated by using a potential description of interaction, such as pair
creation and self-interaction—and which, perhaps, may eventually throw light on the nonlocal
phenomena involved in particle detection.

References

[1] Wignall J W G 2000 Int. J. Mod. Phys. A 15 875
[2] de Broglie L 1924 Phil. Mag. 47 446

de Broglie L 1925 Ann. Phys., Paris 3 22
[3] Davisson C and Germer L H 1927 Phys. Rev. 30 705
[4] Thomson G P 1927 Proc. R. Soc. A 117 600
[5] Wignall J W G 1992 Phys. Rev. Lett. 68 5

Wignall J W G 2005 Meas. Sci. Technol. 16 682
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